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Classical Liquid-Gas Interface 
in Thermal Equilibrium 
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The Kac-Siegert transcription of a nonuniform classical fluid is described. It is 
applied to the energetics and spatial structure of a liquid-gas interface via direct 
and extended mean-field treatments and put in the context of Gaussian random 
field studies. 
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1. INTRODUCTION 

It is delightfully easy to write something suitable in honor  of Oliver  
Penrose 's  coming of age, since Oliver  has made  his own so many  aspects 
of statistical physics. I will choose the area sur rounding  van der Waals '  
equat ion of state, which itself was finally made  honest  by Oliver and Joel 
Lebowitz.  c~ To do so, they had to make very explicit the quenching of 
fluctuations inherent  in van der Waals '  approach,  t2~ and one wonders  
which shou ld  be included, and to what  end. 

One of the difficulties in t reat ing thermodynamics  from a micro-  
scopic viewpoint  is that  particle densi ty , 6 ( r ) = Z  ~ ( r - r j ) ,  the seemingly 
unavoidable  microscopic  descriptor ,  is a horrible function, always zero 
except when it is infinte, and restricted by loads of sum rules: Sv/~(r) d r =  
integer for any subvolume V. Of course, this does not  mean that  one can- 
not  write down' exact solut ions for some nontr ivial  sys tems- - i t  jus t  means 
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that a per-configuration description of any approximation tends to be 
embarrassing. Van der Waals treated this problem for molecular fluids by 
imagining in essence that one knew how to solve an innocuous reference 
system in which only short-range pair exclusion forces acted between 
particles, and then asked how the addition of longer-range pair attractions 
served to organize the system. I want to describe the spatial structure of the 
liquid-gas interface of a simple fluid from this viewpoint, being aware of 
the physical hallmark of the structure: it looks like a membrane, feels like 
a membrane, and is thermally excited like a membrane. 

The key to the approach I have in mind is the representation, due to 
Kac and Siegert, t3~ of a (negative-definite) tail interaction potential 
-q~(r-r') by an ensemble of external potentials. The result is that if 
t'2o[/~ ] is the grand potential of the reference system in a local chemical 
potential field # ( r ) = / ~ -  u(r), with u(r) the external potential, then 

exp -/~g2 [it]  = <exp -/~g2o[# - ~bo - v] >~ (1) 

where ~bo = ~b(0), fl is reciprocal temperature, and the ensemble average is 
over the Gaussian random field v: 

(F[v]) , ,=f  F[v]exp(--�89189 (2) 

~b-~(r-r ' )  is the matrix inverse to ~b(r-r ') .  The nastiness of t~(r) is hidden 
inside (2 o, and if the reference system correlation range is negligible on the 
scale of spatial density variation, we can replace (1) by 

exp - ~g2[# ] = ( exp ~ I Po(p(r) - q) D - v(r) ) drl , (3) 

where Po(/~) is the reference system equation of state. In this event, the 
mean density # ( r )=  -612/6#(r) becomes 

n(r)=(no(l~(r)-(~o-v(r))expfl(f2[lt]+f Po(l~(r)-qko-v(r))dr)),, (4) 

where no(/~) is the thermodynamic n-/~ relation for the reference. 
The first try at evaluating an expectation such as (4) is usually by 

mean-field approximation (demonstrably exact 14~ in one scaling limit). One 
assumes that the v distribution is concentrated at the maximal g of the full 
kernel of (3), and on eliminating ~ one readily finds that 

/~(r) = po(n(r)) + ~bD -- ~bn(r) (5) 
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leading as well to the intrinsic Helmholtz free energy 

F (n )=  I fo(n(r)) dr + f (b(O)n(r) dr-�89 f n(r)n(r') fb(r-r') dr dr' (6) 

A Taylor expansion of n(r') about n(r) to second order recovers the 
van der Waals form 

F i n ]  = I  [f~189 I IVn(r)l:dr (7) 

Now an interface is generated precisely when f(n)=fo(n)+ ~b(0)n-bn 2 is 
not convex, and the corresponding P(n)=Po(n)-bn z has the familiar 
van der Waals loop. But uniform n(r) does not minimize (7). The simplest 
model to see what does happen uses the reference 

/.to(n) = { -- oo, oo, 0 } for {n<~O,n>~p,O<n<p} (8) 

that is either vacuum or incompressible at density p, and chooses ~b(0)= bp. 
The corresponding profile equation is 

#(r) = b(p - 2n(r)) - cVZn(r) (9) 

for 0 ~< n(r) <~ p, with continuous Vn when n(r) arrives at 0 or p. Thus, e.g., 
a gravitational field # ( r )=  -gx  produces a planar interface profile of the 
form 

n(x)=p g (~_b) 1/2 ~+~-~x+A sin x (10) 

A mean-field profile such as (1) gives little evidence of softening due 
to surface modes as the constraining field is weakened. But in fact, mean 
field may be quite suitable within each phase. Define the liquid domain of 
a given v configuration--not to be confused with a particle configuration-- 
as that within which #(r) - ~b D - v(r) >1 O, the gas as that in which 
#(r)- (Jn-v(r)< 0. Then with the reference system (8), 

Po(/~) = p#e(p) (11) 

The kernel of (3) is indeed Gaussian within each phase. And to within a 
generally irrelevant multiplier, the integral of a Gaussian is given exactly by 
mean field. Thus, if the interface geometry is defined by the (multivalued) 
function z = ~(x, y) through 

v(r)=l~(r)-fbn at r=(x,y,~(x,y)) (12) 
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and enough normal derivatives of v are fixed so that the remaining degrees 
of freedom in the two phases no longer communicate, we can simply compute 

min-~ fo P(P(r)-r176 dr + �89 f fo v(r) v(r') C-'(r-r') dr (13) 

(~ = 0 or l) over each phase domain D. For this purpose, it is necessary 
that r  be of zero range, e.g., a polynomial in V 2. Simplest is a first-order 
polynomial, but then ~b is Yukawa and r diverges, requiring an infinite 
chemical potential renormalization. r Next simplest is r  Ae -~r, so that 
r  is quadratic in V 2. Then it suffices to fix the common values s(x, y)= 
av/an (representing an inverse thickness) on the two sides of the interface, 
so that after "mean-field integration" of the accessible amplitude v(r), only 
the interface grand potential ~ [ p ,  ~, s] remains, with 

Y2[,] = f f  Y2[#, ~, s] D~ Ps (14) 

In practice, this procedure is only feasible when the surface curvature is 
small enough that it can be locally modeled as quadric, but then one does 
obtain a curvature-dependent surface free energy in which the internal 
structure is taken into account. 

There is another fashion in which the mean-field concept can be used. 
If it is sufficient to focus on the vicinity of the geometric interface, which 
is itself a hybrid phase, one may approximate a in (13) by a local liquid 
fraction a(r). Hence {v(r)} is literally a random Gaussian field, and the 
interracial structure in each configuration is determined by the "level 
surface" (12). There are at least two consequences. On the one hand, the 
full machinery of Gaussian random fields is available to find the distribu- 
tion of various geometric parameters Is~ associated with the v configuration. 
On the other hand, the very easily manipulated Gaussian model can be 
chosen as a variational ansatz, either in its general form or in the specific 
form associated with (13) and a(r). Then one uses the standard variational 
principle for Y2 = - ~ In ~ e-t~H[L'] Dv: 

J'p[v] Dr= l \,O / p[~] 

In the present case, 

~/[v] = - p  f [ # ( r ) - r  v(r)] ~[#(r ) - r  dr+ 

+ (�89 Tr In 2nr 

In p Iv-] = - �89 + ea)T r - '(v + Ca) - �89 Tr In 27zr 
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l e ad ing  to  the  qu i t e  expl ic i t  

s  ~r~bct  [fl/2r~(~(O)]m p f f~,,,,-oo - -  ( g ( r )  - -  C o  - -  v ( r ) )  

exp --  fl[v + r 1 6 2  dv dr 

w i t h  

n ( r ) =  [ fl/2rcr O ) ] m p I u ( r )  - ~~ e x p  - # [v  + ~=tr) ]:/2(~(O ) dv 
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